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Geospatial Foundation Models (GFMs)
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Executive summary
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Foundation models (FMs) or base models, are task-agnostic, pre-trained, large-scale neural networks that can be adapted to numerous downstream tasks.

Within FMs, large language models (LLMs) trained on terabytes of internet-based textual datasets like CommonCrawl have become popular in recent years due to
product examples like ChatGPT. As LLMs have attracted hundreds of billions of EUR, and FMs like GPT-3/GPT-4 have led to a myriad of derivative models tailored to
specific downstream tasks (e.g., specific assistants). These recent investments in LLMs have also shed light on the unit economics in an Al-world: CAPEX required to train
SOTA models increases~2,5x/annum’, compute required to train SOTA models is growing at ~4,6x per year’, rapid commoditization of models occurs due to open-source
competition, different geographic regions tend to build their FMs?, and rapid declines in token costs for existing models occur at -86%/annum?.

New categories of FMs will occur in the coming years, typically with alternative use cases. The main examples include geospatial foundation models (GFMs), time series
foundation models (TFMs), and material foundation models (MFMs). An alternative way to segment foundation models is to focus on the data modality being used, the
main categories using that logic are language foundation models, vision foundation models and multimodal foundation models - the latter category using multimodal
input data and typically allowing multimodal generalizations (e.g. text to image, image to text).

Geospatial FMs (GFMs) are a subset of foundation models encoding rich information about places and regions, and are typically trained on satellite data, climate data,
weather data, topographic data, drone data, and demographic data. GFMs are relevant for predictions that relate to locations, such as environmental risk predictions
(e.g..,, flooding, wildfires, deforestation — 10-50B EUR/year), energy predictions (e.g., locations of renewables, power grid failures — 10-20B EUR/year), agricultural
predictions (future land use, expected droughts, water management - 10-20B EUR/year), urban predictions (e.g., smart city optimization, real estate planning - 10-50B
EUR/year) as well as many others (e.g., military information, insurance analytics - 10-50B EUR/year). We estimate that these use cases together will push the geospatial
models into the mainstream for companies. We also recognized that the value captured depends largely on the speed of Al adoption.

Lastly, we dive into the Al economics making these use cases viable and highlight three main trends relevant to understanding Al economics: i) the increase in training
costs for new state-of-the-art (SOTA) models, ii) the increase in the total amount of available models, and iii) the decrease in token costs over time. First, investment for
developing foundation models is significant, with the first ~Ibln EUR models in sight - while at the same time cheaper variants keep popping up (e.g., DeepSeek, Llama).
Second, in the last four years open-source model repositories have grown very rapidly in with a 70X increase in the number of models available. Language-based models
are still the dominant category, but this can change when more high-quality and affordable satellite data becomes available at scale. Finally, given the intense
competition from open-source models, APl token costs tend to fall rapidly, as was shown in recent years for GTP-3 and GPT-4 where token costs fell ~90% per year.
These trends support the premise that geospatial models can have a wide set of economically viable use cases in the coming years, as the willingness to invest is present
and usage costs are declining rapidly.

'Source: Epoch.ai; 2 ChatGPT in the US, Mistral in Europe, DeepSeek in China - with largely similar capabilities, * source: deeplearning.ai. 3 LU NAR



Foundation models are multi-purpose models...
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Source: University of Amsterdam (2024): Foundation models are platform models.
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..where GFMs focus on geospatial predictions

Earth observation (EO) data is growing rapidly in volume and quality"... ...allowing a wide range of highly relevant use cases?.
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4 Source: ourworldindata.org; EUPex; IBM Research; Maxar; ' Granularity of satellite pictures have moved from 60mx60m to 15cm x 15cm today; 3 LU N AR
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GFMs have the potential to be a multi-billion EUR/year industry
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Data modality >
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Environment

Sector >

Agriculture

Other

Value estimate > 10-50B EUR/year.

Wildfire predictions,
flood predictions,
deforestation,
desertification,
hurricane predictions,
assets at risk
calculations, carbon
credits verification,
environmental
compliance.

5 "Examples include K2, GeoLM, SpacelLLM; 2 Examples include Prithvi, ClimaX, Clay; * Examples include CityFM, Satlas.

10-20B EUR/year.

Renewable energy
siting optimisation,
infrastructure
monitoring, extreme
weather predictions,
methane leak
monitoring, supply
chain risk
optimisation,
environmental
compliance.

5-25B EUR/year.

Land use modelling,
crop yield
optimisation, water
stress monitoring, pest
detection, monitoring
soil carbon levels,
verifying carbon
sequestration, supply
chain optimisation,
supply chain risk
detection.

10-50B EUR/year.

Smart city planning,
traffic management,
mobility analytics,
urban heat island
mitigation, air
pollution monitoring,
disaster resilience
predictions, real
estate risk
predictions.

50-100B EUR/year.

Military inteligence,
logistics optimisation,
insurance risk
modelling, national
border monitoring,
retail site selection,
venture capital
analytics, mining and
resource exploitation,
maritime monitoring.
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While training costs for foundation models is generally increasing...
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Source: epoch.ai; ' Note the discussion around DeepSeek’s true training costs, with estimates from 5,6min USD to 1,6bin USD.
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...the competition between models is fierce...

Open-source models grew ~70X in the last four years... ..and more players are releasing large (over 10°23 FLOP) models.
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7 Source: Hugging Face, Epoch.ai. 3 LU NAR



...and falling token costs will make more use cases economical

GPT-3 token cost fell ~86% in cost per year... ...and GPT-4 tokens showed a similar trend of falling 92% per year.
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8 Source: Ark Invest analysis (2024); The Batch (2024). 3 LUNAR
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